Diffusion maps Ronald

نویسندگان

  • Ronald R. Coifman
  • Stéphane Lafon
چکیده

In this paper, we provide a framework based upon diffusion processes for finding meaningful geometric descriptions of data sets. We show that eigenfunctions of Markov matrices can be used to construct coordinates called diffusion maps that generate efficient representations of complex geometric structures. The associated family of diffusion distances, obtained by iterating the Markov matrix, defines multiscale geometries that prove to be useful in the context of data parametrization and dimensionality reduction. The proposed framework relates the spectral properties of Markov processes to their geometric counterparts and it unifies ideas arising in a variety of contexts such as machine learning, spectral graph theory and eigenmap methods. © 2006 Published by Elsevier Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous Datasets Representation and Learning using Diffusion Maps and Laplacian Pyramids

The diffusion maps together with the geometric harmonics provide a method for describing the geometry of high dimensional data and for extending these descriptions to new data points and to functions, which are defined on the data. This method suffers from two limitations. First, even though real-life data is often heterogeneous , the assumption in diffusion maps is that the attributes of the p...

متن کامل

Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms

1 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel, [email protected] 2 Google, Inc. 3 Department of Mathematics, Yale University, New Haven, CT, 06520-8283, USA, [email protected] 4 Department of Chemical Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA, yan...

متن کامل

Multivariate time-series analysis and diffusion maps

Dimensionality reduction in multivariate time series has broad applications, ranging from financial-data analysis to biomedical research. However, high levels of ambient noise and various interferences result in nonstationary signals, which may lead to inefficient performance of conventional methods. In this paper, we propose a nonlinear dimensionality reduction framework using diffusion maps o...

متن کامل

Non Linear Independent Component Analysis with Diffusion Maps

We introduce intrinsic, nonlinearly invariant, parameterizations of empirical data, generated by a nonlinear transformation of independent variables. This is achieved through anisotropic diffusion kernels on observable data manifolds that approximate a Laplacian on the inaccessible independent variable domain. The key idea is a symmetrized second order approximation of the unknown distances in ...

متن کامل

Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps.

Nonlinear independent component analysis is combined with diffusion-map data analysis techniques to detect good observables in high-dimensional dynamic data. These detections are achieved by integrating local principal component analysis of simulation bursts by using eigenvectors of a Markov matrix describing anisotropic diffusion. The widely applicable procedure, a crucial step in model reduct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006